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Antifield-antibracket formulation of the anti-sRsT 
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Abstracf The antifieid-antibracket implemendation of the  anti-^^^^ transformation is given for 
an arbitrary irreducible gauge invariant action. As in the Hamiltonian case, this is done by 
duplicating the gang symmetries and by consrmcting directly the sum of the BRST and anti- 
BRST msfomations. The gauge fixing process is then derived along the lines of the standard 
antifield-antibracket formalism. This establishes the equivalence of bath formulations in a 
suaightfonvard way. A brief discussion of the reducible ease is reported at the end. 

1. Iutroductiou 

Recently, the Lagrangian BRST-anti-BRST formalism has attracted considerable attention; 
different viewpoints have been presented in [1-8]. In accordance with the ideas presented 
for the Hamiltonian case in [9,10], we show in this paper (i) that the most convenient way 
to construct the ERST and anti-BRST transformations is to deal directly with their sum; and 
(ii) that the proper setting for the whole construction is that of homological perturbation 

Our starting point is an irreducible gauge invariant action SO[@] where the coordinates 
@ = ( @ I ,  . . . , q5") have Grassmann parities E ( @ )  = ~ i .  The gauge generators Rk[@] with 
CY = l , ,  . . , N are such that 

theory [ l l ] .  

s' s, 
a y  - - R L = O  a = 1 ,  .... N 

with E(R$ = E; +&. Thus the classical action is invariant under the gauge transformations 
SE@ = Rk[+]<" with = E . .  We assume that all the gauge generators are independent 
and form a complete set. If r denotes the set of all classical trajectories ( t  --+ @ ( t ) } ,  then 
the equations of motion 

define the stationary surface C in r. From the completeness assumption about gauge 
generators, one deduces that 
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where Ft; means that the equality holds on the stationary surface: such an equality is often 
referred to as a weak egualiry. 

P Grdgoire and M Henneawr 

2. The antifield-antibracket standard BRST theory 

To warm up, let us recall the key ideas of the standard BRST theory in its Lagrangian 
formulation [12,13]. The central feature of the antifield-antibracket theory is the 
construction of the BRST differential s, which captures gauge invariance, and of the 
BRST invariant extension S of the classical action SO. The differential s and the BRST 
invariant action S are constructed at the same time; if (., .) denotes the antibracket of 
Batalin and Xlkovisky 1121, then S is the unique (up to a canonical transformation) 
solution of the so-called master equation ( S ,  S )  = 0 that satisfies the boundary conditions 
S = SO + q5fR;f  + . . .. We denote by the fields (the original variables @ and the 
ghosts 11") and by q5; the antifields (the q5; and the q;) so that one has (#A, &) = 6;.  The 
BRST transformation takes the form s = (., S ) .  

The resolution of the master equation is carried out using homological pertubation 
theory. It proceeds as follows. The BRST operator contains two crucial differentials 

s = 6 +  D+... (4) 

playing two distinct roles. The first, denoted 6, is the Koszul-Tate differential whereas 
the second, denoted D, is a model for the longitudinal exterior differential along the gauge 
orbits ([I31 and references therein). The Koszul-Tate operators implements the equations of 
motion in homology, i.e. it provides a resolution of the algebra of smooth functions defined 
on the stationnary surface Cm(E), while D takes into account the gauge invariances (on 
E). Within this formalism, the master equation is equivalent to the following family of 
equations 

( k )  (k )  +I) 
where S = S, res( S )  = k, g h ( S )  = 0 and D has the property of being closed by 
virtue of the Jacobi identity for the antibracket. The equations (5) are solved recursively. 
The existence of solutions follows from the acyclicity of the Koszul-Tate operator with a 
positive degree of resolution. 

The solution S of the master equation is the canonical generator of the BRST 
transformation. Since, s contains both 6 and D, the Koszul-Tate differential and the 
extended longitudinal exterior operator can be expressed through the antibracket. One 
has 

The construction of a BRST invariant gauge fixed action for the path integral is then 
that (traditionally) depends performed through the choice of a gauge-frringfermion 

only on the fields G A :  
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3. The main ideas underlying the BRST-anti-BRST theory 

The BRST-anti-BRST algebra is defined by 

(9) SI 2 - 0 -  - - s2 2 s1sz +SZSl = 0 

where st and sz are, respectively, the BRST and the anti-BRST operators. These operators 
must be such that their cohomology in degree zero is given by the physical observables. 
We have shown in [9, IO] that the most expedient way to construct the BRST and anti-BRST 
generators is to deal directly with the sum 

s = SI + sz. (10) 

Because SI and $2 anticommute and are both nilpotent, their sum s is also nilpotent. 
Conversely, any nilpotent operator that splits into two terms as in (10) implies a BRST- 
 anti-^^^^ algebra for its separate parts s1 and sz. Hence, provided one ensures that s does 
indeed split as in (IO), one can replace (9) by the single equation 

sz = 0. U!) 

In order to ensure that s splits into just two parts, we found it necessary to introduce a 
bidegree that distinguishes between $1 and s2. That bidegree is called the 'ghost bidegree' 
and denoted bigh = (ghl, gh2) and is defined so that 

bigh(sl) = (1,O) and bigh(s2) = (0, 1). (12) 

Now, the derivation s is not only nilpotent, but it also possesses the following crucial 
feature: its action on the original classical fields starts like 

s# = Ri(ghosts)' + Ri(antighosts)' + 'more' (13) 

i.e. the given galige transformations appear twice in s. They are paired once with the 
antighostst and once with the ghosts. One can thus view the (nilpotent) s u m s  of SI and s~ 
as the BRST generator corresponding to the redundant description of the gauge symmetries 
obtained by duplicating the gauge generators. To construct s (and hence, SI and SZ). one 
can accordingly simply follow the standard BRsTprocedure for reducible system, paying due 
attention to the bidegrees. 

This approach was shown to be .direct and effective for the Hamiltonian formalism in 
19, IO]. We show below that it also works in the Lagrangian case. There is, however, 
one complication with respect to the Hamiltonian case. This complication has to do with 
the antibracket, which has ghost degree 1 in the standard antifield formalism. In order to 
maintain the symmetry between the ghosts and the antighosts, it will turn out to be necessary 
to duplicate the antibracket as well and to introduce one antibracket of bidegree (1.0) and 
one antibracket of bidegree (0. 1). This problem is dealt with in section 5. 

t The antighosts should not be confused with the antifields. Even though they have the same value of g k l  - gh2, 
they have different bidegrees and play quite different roles. They appm as non-minimal variables in the standard 
approach to ERST. 
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4. The spectrum of ghosts 

Let us thus duplicate the gauge generators RL, i.e. let us replace !he original form of 
the gauge transformations S# = RLe' by the equivalent redundant form 864 = R6e0, 
with RL 3 (R;, R i ) .  We must introduce the corresponding reducibility functions Zz  5 
(-St, St). Following the standard rules for BRST construction, one associates with the (new 
reducible) gauge generators RI, and with the reducibility functions Z: the ghosts and the 
ghosts for ghosts 

P Grbgoire and M Henneaux 

vu (v:) ,  &) and JI" (14) 
with gh(r f )  = 1, gh(a') = 2 and c(rfl)), = ~ ( y l ; ) )  = E ,  + 1, €(ne) = E.. As explained 
above, we define a bidegree that distinguishes between the ghosts ~ 5 ,  and the antighosts 
q& by setting 

bigh(r);)) = ( L O )  ( 1 3  

bigh(r)&) = (0, 1) ( 16) 

bigh(nu) = (1,l). (17) 
(1,O) (0,I) (1.1) 

This motivates the alternative notation B,, v&, nq for @,. 7;) and nQ, respectively. 
Following the standard d e s  of ordinary BRST theory, one defines on E the longitudinal 

exterior derivative associated with the redundm1 description of the gauge symmetries as 
follows [13] 

(1.;) . 
The action of D on the ghosts for ghosts x IS chosen in such a way that D2 % 0. Due to 
the bigraduation of the polynomial algebra 
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5. The antibracket structure 

In the standard antifield formalism, there is one antibracket which has ghost number 1. In 
order to make this structure compatible with the bidegree [14-161 while simultaneously 
preserving the symmetry between the two degrees ghl and ghz ,  it is necessary to introduce 
here two antibrackets, one with bidegree (1, O), the other with bidegree (0, 1). There is no 
such difficulty in the Hamiltonian formalism because the Poisson bracket has ghost number 
zero. For each field @ A  5 (4, v : ~ ) ,  qt;,. zn), one thus introduces two antifields @:(I) and 
@:('), one conjugate to @ A  in the first antibracket, the other conjugate to # A  in the second. 
Thus, we have 

where the superscript (a, 6) denotes the ghost bidegree. 
In analogy with the standard BRST formalism (equation (6)), we require that D(bA be 

generated through the antibracket (., .) = (.. .)I +(., .)z with a generator S of bidegree (0,O). 
This implies that Dl@A and are generated rhrough (., .)I and (., .)I, respctively, with 
the same generator 

D I @ ~  = ( @ A ,  S)~laotifie~ds=o and = ( @ A ,  S)zlantific~ds=o. (27) 

It is easy to check that S must start as follows, 

(0). . S is, in fact, not dictated by (21)-(25), but is included for the description The first term SO 
of the Koszul-Tate biresolution. to which we now turn. 

6. The Koszul-Tate biresnlutiou 

Following (7). we define the Koszul-Tate differential S by taking the antibracket of the 
antifields with S and then setting the ghosts equal to zero. One gets from (28) 
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and 
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One also finds SIZ,‘“ = 0 = Ggr,‘(’) and S~Z,‘(~) = @12) - @’) = 61n,’(~). However, as 
we shall see presently, this last relation must be modified. 

Indeed, there are two problems with this definition of the Koszul-Tate complex. These 
problems originate fiom the fact that we have departed from the usual antifield formalism 
by duplicating the antibracket and are: 

(i) the operator 6 fails to be nilpotent on r*; and 
(ii) there are non-trivial cvcles with a oositive deeree of resolution. For instance. 

.. 
+:”) were equal, none of these problems would arise. This suggests solving the difficulty 
by introducing further variables that kill the difference @:(’)-- @:(’) in homology. These 
extra variables are called the ‘bar variables’ and denoted by @ A .  So we set 

bighJa = - 1, - 1) (41) 

(42) 

and define 
*(2) - @;‘I), v6A = @A 

The operator V is the same as the one introduced in [2], and has been given a geometrical 
interpretation in [15]. It is nilpotent and it acts as a derivation for the antibracket (, ). Only 
the sum of the antifields (say) survives in its homology. Since 6*z* fails to he zero by 
terms that are in the homology of V ,  we can cure the definition of 6z’ by adding terms 
proportional to the bar variables 

(-%-I) (-1.-2) (-2,-l) (-l .- l)  ( - l . - l )  (-1-1) (1.1) 

61 n y  = 62 7p = ( n‘y) , (‘I@ *(W - qi (21)  + Ji ~ b )  =611 
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(2) (-11-1) (1.1) 
This amounts to adding to S the term @i Ri zp , i.e. to modifying S as 

The complete Koszul-Tate operator 6 is the sum of a canonical and a non-canonical 
P". 

6 = 8caoonid + V (45) 

with V given by (42) and a m 0 ~ d  equal to 

~ m o N c a l  = (., S)Ill=0-71. (46) 

Because we have included So in S, i.e. SSo/S@ in 6@, it is now easy to see that on the 
bigraded by the resolution bidegree, polynomial algebra K*,* = C[@i('), @A *(z) , @A]@Cm(r) - 

one has 
(i) bires(81) = (-l,O), bires(62) = (0, -1). 
(ii) Ho.o(Si) = Ho,o(Sz) = Ho(8) = Cm(C), while the other homology spaces are 

In other words, the bicomplex (K,,, 6 = 61 +62) is a biresolution of the algebra C"(C) 
bivial. 

in the sense of [lo]. 

7. The master equation 

The total BRST transformation s is equal to 8 + D + . ., where the additional terms are 
chosen in such a way that s2 = 0. From the previous sections, we should not expect S to 
be canonically generated. Rather, we are led to try to complete S in such a way that 

s = (., S) + v. (47) 

The requirement that s be nilpotent is equivalent to the 'master equation' for B R S T - ~ ~ ~ - B R S T  
theory, 

(48) 
1 z(s, S) + vs = 0. 

It is easy to see that equation (48), in turn, is equivalent to the family of equations 

(4 (k) 
where S = CEO S and res( S) = k. These equations take exactly the same form as in 
ordinary BRST theory and can be solved in exactly the same recursive method of homological 

(k-I) 
perturbation theory. Indeed, D is &closed for k > 1 by the Jacobi identity. Because 6 is 
acyclic at higher resolution degree, there exits, for any k > 1, a solution of (49) compatible 
with the boundary conditions. The case, k = 1, is easily solved and it is straightforward to 

check that S is purely a boundary term. 
(1) , 
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Furthermore, the general formalism controlling the bidegree developed in [lo1 applies 
and guarantees that the solution S not only exists but can also be taken to be of bidegree 
(0,O) (see the so-called ‘positivity theorem’ in [lo]). Then, S splits as in (lo), with 

SI = +(., S)l + Vl 

sz = $(., S)Z t vz. 

T(s. 1 S)l + VIS = 0 = i(S, S)* + VZS. 

(50) 

(51) 

while the master equation itself splits as 

(52) 

Those equations as well as the boundary conditions on S are the same as those appearing 
in [2] in the context of  the sp(2) formalism, but we have focused here on just the BRST- 
anti-BRST algebra rather than on the full sp(2) algebra We have thus established that one 
can define the BRST-anti-BRST algebra for any gauge theory (prior to gauge fixing), as 
well as equivalence with the sp(2)-formalism. Note that S is neither BRST-inVariant nor 
anti-BRST invariant. This is due to the fact that it is not the canonical generator of these 
transformations. Finally, note also that spacetime locality of S can be proven along the same 
lines as in the ordinary BRST formalism [13,17], since the equations (49) for the structure 
functions take the same form. 

8. The gauge-fudng process 

A method for gauge fixing S in a manner that preserves both BRST and anti-BRST invariance 
has been given in [Z]. The equivalence of  that method with the usual BRST gaugefixing 
method is, however, not obvious. Even though equivalence proofs have appeared since then 
[14,15], it is of interest to provide a more duect proof. This is done here. 

Let us introduce an extra field fi& conjugate to $A in the first antibracket and let us 
forget for a moment about the second antibracket: 

(53) 

Let us also introduce a field p i ,  conjugate to @:@) in the first antibracket, so that all the 

A -  (fi(i)?@B)I =$. 

In the illowing we shall regard 4;”) as a I and 06, as an antifield. 
If one sets S1 = S+@:(”p&, then the first equation of (52) is equivalent to the equation 

(Si. SI11 = 0. (57) 

Equation (57) shows that SI is sl-invariant, even though S is not. The additional terms 
in ST restores the canonical structure for the first antibracket with the consequence that 
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SI is now canonically generated with canonical generator SI : SI = (..SI)I. Let 
u[ f l ,  q&,qc*(l),@l)] be the standard minimal solution of the usual master equation 
( U , U ) ~  = 0, with the usual boundary conditions. Then, the action s([@,@;(')I = 
U - @')nn + @;(')p& is a non-minimal solution of (Si, Sf)l = 0. Using the standard 
uniqueness theorems of antifield-antibracket theory, one sees that SI is a non-minimal 
solution of the master equation (SI, S1)l = 0 which can be obtained from Si via a canonical 
transformation. We now apply the standard procedure to fix the gauge recalled in section 
2; the gauge fixed action is given by 

Let F [ e A ]  be a bosonic functional depending only on @ A ,  and choose 

Then, one has 

If we inmduce Lagrange multipliers p& and AA for the gauge choice (60), the usual path 
integral 

ZW = j v+Av~G)v@~(~) exp(iS*) (61) 

with the choice of gauge fermion (59) can be rewritten 

where the effective action reads 

Integrating over the multipliers p i )  and AA forces the choice (60) and yields back the action 
(58). 

The path integral (62) is exactly the one obtained by Batalin et al in [Z]. However, 
(62) has been obtained here within the standard antifield-antibracket formalism, and so, 
equivalence with that formalism is manifest (the choice of non-minimal sector does not 
modify the physical amplitudes). In particular, the standard Batalin-Vilkovisky theorem 
shows that (62) is independent of the choice of bosonic functional F .  Also, the effective 
action is guaranteed to be BRST invariant. 

One can similarly derive (62) by using the ~ - B R S T  transformation and the second 
antibracket, since the final result is completely symmetric between @iI and &. One can 
thus conclude that (62) is not only BRST-invariant but also anti-BRST invariant. 
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The invariance of the effective action (63) can be checked directly. Indeed, the 
variation of the effective action (63) under the following 'gaugefixed' BRST and anti-BUT 
transformations 

(64) A -  ob A 
- - E  p b  

(where a,  b = 1.2 and d2 = 1) is easily seen to vanish. To compare (64)468) with the 
standard form of the BRST transformation, we note that in Sec, the fields AA, $4, p& and 
@*(I) can be viewed as auxiliary fields. The symmetry SI can be first expressed on @:(*) 

and p& through the usual rule of the antifield-antibracket formalism, that is, SI = (., & ) I .  
Then the BRST symmetry can be extended to the auxiliary fields as explained, for instance, 
in [13]. This yields the above equations. To derive the ~ ~ ~ - B R S T  symmetry, one proceeds 
similarly and now treats AA,  JA, pa, and qP(*) as auxiliary fields, Note that the symmetries 
(64>-(68) are defined only modulo skew symmetric combinations of the equations of motion 
and also that they slightly differ from those presented in [2] where there is a misprint in the 
transformation of p&. 

9. The reducible case 

The reducible case is treated along the same lines as the irreducible one. The spectrum of 
ghost is obtained by duplicating the gauge symmehies and the reducibility relations; this 
duplication is similar to the one considered in the Hamiltonian BRST-anti-BRST formalism 
(see [16]). The construction of the Koszul-Tate biresolution is performed by requiring (i) 
the existence of a canonical bistructure and (ii) the acyclicity at a higher degree of resolution. 
Finally, the gauge-fixing process is absolutely similar to the one presented above. 

10. Conclusion 

We have shown that the BRST-anti-BRsT symmetry can be constructed in the antifield- 
antibracket formalism by adapting the methods of homological perturbation theory. The 
cornerstone of our construction relies on the existence of a biresolution of the algebra 
of smooth functions defined on the stationary surface that allows us to use the positivity 
theorem. We have also shown that the gauge-fixing process of the BRST-anti-BRST antifield- 
antibracket formalism can be seen as a particular choice of gauge-fixing fermion in the 
standard antifield-antibracket formalism, leading to a proof of the equivalence between the 
BRST-ti-BRST theory and the standard BRST theory in its Lagrangian formulation. Our 
results also coincide with the sp(2) formalism developed by Batalin er d in [2]. 
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Finally, in the case when the gauge algebra closes off-shell, one can take the solution 
S of the master equation to be linear in the antifields, 

where so$A depends only on the fields. The integration over &, 4;") and hA is then 
immediate and yields the familiar path integral [18,191 

When the gauge algebra closes on-shell, however, it is not passible to eliminate the extra 
variables (201 in general. 
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